版权说明 操作指南
首页 > 成果 > 详情

Dissipativity of the linearly implicit Euler scheme for Navier-Stokes equations with delay

认领
导出
下载 Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wang, Wansheng*
通讯作者:
Wang, Wansheng
作者机构:
[Wang, Wansheng] Changsha Univ Sci & Technol, Sch Math & Stat, Yuntang Campus, Changsha 410114, Hunan, Peoples R China.
通讯机构:
[Wang, Wansheng] C
Changsha Univ Sci & Technol, Sch Math & Stat, Yuntang Campus, Changsha 410114, Hunan, Peoples R China.
语种:
英文
关键词:
Dynamical systems;Linear systems;Time delay;Viscous flow;2D Navier Stokes equations;Discrete dynamical systems;Dissipativity;Dissipativity analysis;Euler scheme;Implicit-explicit scheme;Long time stabilities;numerical attractors;Navier Stokes equations
期刊:
Numerical Methods for Partial Differential Equations
ISSN:
0749-159X
年:
2017
卷:
33
期:
6
页码:
2114-2140
基金类别:
Correspondence to: Wansheng Wang, School of Mathematics and Statistics, Changsha University of Science and Technology, Yuntang campus, 410114 Changsha, China (e-mail: w.s.wang@163.com) Contract grant sponsor: National Natural Science Foundation of China; contract grant number: 11371074 Contract grant sponsor: Natural Science Foundation of Hunan Province, China; contract grant number: 13JJ1020 Contract grant sponsor: Research Foundation of Education Bureau of Hunan Province, China; contract grant number: 13A108
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学院
摘要:
In this article, we study the dissipativity of the linearly implicit Euler scheme for the 2D Navier-Stokes equations with time delay volume forces (NSD). This scheme can be viewed as an application of the implicit Euler scheme to linearized NSD. Therefore, only a linear system is needed to solve at each time step. The main results we obtain are that this scheme is L2 dissipative for any time step size and H1 dissipative under a time-step constraint. As a consequence, the existence of a numerical attractor of the discrete dynamical system is est...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com