版权说明 操作指南
首页 > 成果 > 详情

Network and Dataset for Multiscale Remote Sensing Image Change Detection

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Liu, Shenbo;Zhao, Dongxue;Zhou, Yuheng;Tan, Ying;He, Huang;...
通讯作者:
Tang, LJ
作者机构:
[Zhao, Dongxue; Tang, Lijun; Liu, Shenbo; Tan, Ying; Tang, LJ; He, Huang; Zhang, Zhao; Zhou, Yuheng] Changsha Univ Sci & Technol, Sch Phys & Elect Sci, Changsha 410114, Peoples R China.
通讯机构:
[Tang, LJ ] C
Changsha Univ Sci & Technol, Sch Phys & Elect Sci, Changsha 410114, Peoples R China.
语种:
英文
关键词:
Feature extraction;Remote sensing;Transformers;Convolutional neural networks;Change detection algorithms;Adaptation models;Vectors;Shape;Semantics;Deep learning;Attention mechanism;change detection dataset (CDD);feature pyramid;multiscale change detection;remote sensing images
期刊:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
ISSN:
1939-1404
年:
2025
卷:
18
页码:
2851-2866
基金类别:
Water Resources Science and Technology Program of Hunan Province (Grant Number: XSKJ2024064-37)
机构署名:
本校为第一且通讯机构
院系归属:
物理与电子科学学院
摘要:
Remote sensing image change detection (RSCD) aims to identify differences between remote sensing images of the same location at different times. However, due to the significant variations in the size and appearance of objects in real-world scenes, existing RSCD algorithms often lack strong capabilities in extracting multiscale features, thereby failing to fully capture the characteristics of changes. To address this issue, a multiscale remote sensing change detection network (MSNet) and a multiscale RSCD dataset (MSRS-CD) are proposed. A multiscale convolution module (MSCM) is investigated, an...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com