版权说明 操作指南
首页 > 成果 > 详情

A Collaborative Multi-Component Optimization Model Based on Pattern Sequence Similarity for Electricity Demand Prediction

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Tang, Xiaoyong;Zhang, Juan;Cao, Ronghui;Liu, Wenzheng
通讯作者:
Cao, RH
作者机构:
[Liu, Wenzheng; Cao, Ronghui; Tang, Xiaoyong] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Peoples R China.
[Zhang, Juan] Hunan Univ Informat Technol, Sch Comp Sci & Engn, Changsha 410148, Peoples R China.
通讯机构:
[Cao, RH ] C
Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Peoples R China.
语种:
英文
关键词:
Predictive models;Electricity;Prediction algorithms;Accuracy;Time series analysis;Optimization;Forecasting;Machine learning;pattern sequence;electricity demand prediction;component prediction;LightGBM
期刊:
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE
ISSN:
2471-285X
年:
2025
卷:
9
期:
1
页码:
119-130
基金类别:
10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 62372064)
机构署名:
本校为第一且通讯机构
院系归属:
计算机与通信工程学院
摘要:
In the new electricity market, the accurate electricity demand prediction can make high possible profit. However, electricity consumption data exhibits nonlinearity, high volatility, and susceptibility to various factors. Most existing prediction schemes inadequately account for these traits, resulting in weak performance. In view of this, we propose a collaborative multi-component optimization model (MCO-BHPSF) to achieve high accuracy electricity demand prediction. For this model, the original data is first decomposed into linear trend components and nonlinear residual components using the M...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com