版权说明 操作指南
首页 > 成果 > 详情

Short-Term Load Forecasting Method Based on Improved Temporal Fusion Transformer

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Kai Liu;Hongwen Yan;Rui Ma
作者机构:
[Rui Ma] School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha, China
[Kai Liu; Hongwen Yan] School of Computer Science and Technology, Changsha University of Science and Technology, Changsha, China
语种:
英文
关键词:
Smart Grids;Short-term load forecasting;DCNN;BiGRU;TFT
年:
2025
页码:
1-6
会议名称:
2025 2nd International Conference on Electronic Engineering and Information Systems (EEISS)
会议论文集名称:
2025 2nd International Conference on Electronic Engineering and Information Systems (EEISS)
会议时间:
23 May 2025
会议地点:
Nanjing, China
出版者:
IEEE
ISBN:
979-8-3315-2330-5
机构署名:
本校为第一机构
院系归属:
电气与信息工程学院
摘要:
To address the challenges of strong multiscale spatiotemporal feature coupling and complex long-term dependencies in short-term power load data, this paper proposes a hybrid short-term load forecasting (STLF) method based on an improved Temporal Fusion Transformer (TFT) model. First, a parallel dilated convolutional network (DCNN) is constructed as a feature extraction module, leveraging convolutional kernels with different dilation rates to capture local periodic patterns and multiscale spatiotemporal correlations in load sequences. Second, a Bidirectional Gated Recurrent Unit (BiGRU) is used...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com