版权说明 操作指南
首页 > 成果 > 详情

DAS-LSTM: A dual attention-enhanced LSTM with frequency band optimization for EEG-based motor imagery classification in brain-computer interfaces

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Gengbiao Chen;Haolong Li;Hong Yan*
通讯作者:
Hong Yan
作者机构:
[Gengbiao Chen; Haolong Li] College of Mechanical and Vehicle Engineering, Changsha University of Science and Technology, Changsha 410114, China
[Hong Yan] Department of Stomatology, General Hospital of Northern Theater Command, Shenyang 110016, China
通讯机构:
[Hong Yan] D
Department of Stomatology, General Hospital of Northern Theater Command, Shenyang 110016, China
语种:
英文
期刊:
Biomedical Signal Processing and Control
ISSN:
1746-8094
年:
2026
卷:
112
页码:
108616
机构署名:
本校为第一机构
摘要:
Background Accurate classification of MI from EEG signals is crucial for non-invasive BCIs, especially for individuals with motor impairments. However, existing methods often overlook the synergies across multiple frequency bands, limiting their discriminative power. To address this limitation, we propose DAS-LSTM, a hybrid framework that integrates FBCSP for multi-band feature extraction, a simplified LSTM variant with reduced gating complexity, and a dual attention mechanism that prioritizes task-relevant temporal and spectral features. Accur...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com