版权说明 操作指南
首页 > 成果 > 详情

DFS-Net: StyleGAN2-based dual feature separation for face De-Morphing

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Ming Long;Song Chen;Le-Bing Zhang*;Fei Peng;Dengyong Zhang
通讯作者:
Le-Bing Zhang
作者机构:
[Ming Long; Song Chen; Dengyong Zhang] School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China
[Le-Bing Zhang] School of Computer and Artificial Intelligence, Huaihua University, Huaihua, China
[Fei Peng] Institute of Artificial Intelligence and Blockchain, Guangzhou University, Guangzhou, China
通讯机构:
[Le-Bing Zhang] S
School of Computer and Artificial Intelligence, Huaihua University, Huaihua, China
语种:
英文
关键词:
Face De-morphing;Face morphing attack;StyleGAN2;Facial restoration;Feature separation
期刊:
Multimedia Tools and Applications
ISSN:
1380-7501
年:
2025
卷:
84
期:
26
页码:
31609-31631
机构署名:
本校为第一机构
院系归属:
计算机与通信工程学院
摘要:
Face morphing attacks pose a significant threat to face recognition systems. In order to solve this problem, several methods for detecting these attacks have been proposed. However, the restoration of the accomplice’s face image remains in its nascent developmental stage. In this paper, we introduce a novel network architecture termed DFS-Net, which leverages double feature spaces (latent code and feature tensor) and a dual-feature separation (DFS) network. DFS-Net is built upon the StyleGAN2 generator. By utilizing the feature vector and feat...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com