版权说明 操作指南
首页 > 成果 > 详情

Physics-Inspired Neural Network for Joint Inversion of Multi-Altitude 3D Gravity and Vertical Gradient

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yinshuo Li;Zhuo Jia;Wenkai Lu;Cao Song
作者机构:
[Yinshuo Li; Wenkai Lu; Cao Song] Department of Automation, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, P.R.China, Beijing, China
[Zhuo Jia] School of Civil Engineering, Changsha University of Science and Technology, Changsha, China
语种:
英文
期刊:
IEEE Transactions on Geoscience and Remote Sensing
ISSN:
0196-2892
年:
2025
页码:
1-1
基金类别:
10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 42327901)
机构署名:
本校为其他机构
院系归属:
土木工程学院
摘要:
Gravity inversion is the pioneer in exploring the structural characteristics of the Earth, the Moon, and other celestial bodies. Classical gravity inversion methods aim to estimate the 3D subsurface density distribution from the observed 2D surface gravity anomalies, which is an ill-posed problem. Constraints can provide vertical resolution and reduce uncertainty. However, these methods significantly increase the cost of data acquisition. This manuscript presents a novel joint inversion method to estimate subsurface density anomaly via a physics-inspired neural network. The observed signals in...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com