版权说明 操作指南
首页 > 成果 > 详情

Remote Sensing Image Sharpening by Integrating Multispectral Image Super-Resolution and Convolutional Sparse Representation Fusion

认领
导出
下载 Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wu, Honglin*;Zhao, Shuzhen;Zhang, Jianming;Lu, Chaoquan
通讯作者:
Wu, Honglin
作者机构:
[Wu, Honglin] Changsha Univ Sci & Technol, Hunan Prov Key Lab Intelligent Proc Big Data Tran, Changsha 410114, Hunan, Peoples R China.
Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Hunan, Peoples R China.
通讯机构:
[Wu, Honglin] C
Changsha Univ Sci & Technol, Hunan Prov Key Lab Intelligent Proc Big Data Tran, Changsha 410114, Hunan, Peoples R China.
语种:
英文
关键词:
convolutional sparse representation (CSR);learned iterative shrinkage and thresholding algorithm (LISTA);Remote sensing fusion;super-resolution
期刊:
IEEE ACCESS
ISSN:
2169-3536
年:
2019
卷:
7
页码:
46562-46574
基金类别:
This work was supported in part by the National Natural Science Foundation of China under Grant 61772454, Grant 61811540410, and Grant 61811530332, in part by the Scientific Research Fund of Hunan Provincial Education Department under Grant 16A008, and in part by the Postgraduate Training Innovation Base Construction Project of Hunan Province under Grant 2017-451-30.
机构署名:
本校为第一且通讯机构
院系归属:
计算机与通信工程学院
摘要:
In remote sensing, it is quite necessary to fuse spectral information of low-resolution multispectral (LRMS) images and spatial information of panchromatic (PAN) images for obtaining high-resolution multispectral (HRMS) images. In this paper, an effective fusion method integrating multispectral (MS) image super-resolution and convolutional sparse representation (CSR) fusion is proposed to make full use of the spatial information of remote sensing images. First, for enhancing the spatial information of LRMS images with suitable sizes, a fast iterative image super-resolution algorithm based on t...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com