版权说明 操作指南
首页 > 成果 > 详情

Erdős–Ko–Rado theorem, Grassmann graphs and ps-Kneser graphs for vector spaces over a residue class ring

认领
导出
下载 Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Huang, Li-Ping*;Lv, Benjian;Wang, Kaishun
通讯作者:
Huang, Li-Ping
作者机构:
[Huang, Li-Ping] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410004, Hunan, Peoples R China.
[Lv, Benjian; Wang, Kaishun] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China.
[Lv, Benjian; Wang, Kaishun] Beijing Normal Univ, Lab Math Comp Syst, Beijing 100875, Peoples R China.
通讯机构:
[Huang, Li-Ping] C
Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410004, Hunan, Peoples R China.
语种:
英文
关键词:
Erdos-Ko-Rado theorem;Residue class ring;Grassrnann graph;Grassmannian code;p(s)-Kneser graph
期刊:
JOURNAL OF COMBINATORIAL THEORY SERIES A
ISSN:
0097-3165
年:
2019
卷:
164
页码:
125-158
基金类别:
We thank the referees for their time and comments. This research was supported by National Natural Science Foundation of China (Projects 11371072 , 11501036 , 11371204 , 11671043 ), and the Fundamental Research Funds for the Central University of China.
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学院
摘要:
Let Zps be the residue class ring of integers modulo ps, where p is a prime number and s is a positive integer. We study subspaces and Grassmann graphs for Zps n. A Grassmann graph for Zps n, denoted by Gd(n,m,ps) (Gd for short), has all m-subspaces of Zps n as its vertices, and two distinct vertices are adjacent if their intersection is of dimension >m−d, where m<n and 2≤d≤m+1. We give the clique number and geometric structures of maximum cliques of Gd, etc. By these results, we obtain the Erdős–Ko–Rado theorem for Zps n and some b...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com